Assignment IV MTH 512 , Fall 2018
Ayman Badawi

QUESTION 1. Let $<,>$ be the dot product on P_{4}. Given $W=\operatorname{Span}\left\{x^{3}+x+1, x^{3}+x\right\}$ is a subspace of P_{4}. Find the orthogonal complement of W in P_{4} [Hint: Use the fake S.M.R of T and the Fake S.M.R of $T^{* *}$, assume that the inner product is the dot product]

$$
\begin{aligned}
& W \approx W^{\prime}=\operatorname{span}\{(1,0,1,1),(1,0,1,0)\} \text { subspace of of } \mathbb{R}^{4} \\
& M=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \quad M^{*}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right] \quad \Rightarrow \text { Range } \\
& \text { fake } J . M, R \text { of } T=\mathbb{R}^{*} \rightarrow \mathbb{R}^{2} \quad \text { fake s,M,R} \text { of } \rightarrow \mathbb{R}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Range}\left(T^{*}\right)^{\perp}=Z(T) \\
& \text { Solve homogeneous: }\left[\begin{array}{lll|l}
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1
\end{array}\right] \stackrel{0}{\sim} \xrightarrow{-R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 1
\end{array} 0\right. \\
& R_{2}+R_{1} \rightarrow R_{1} \\
& x_{1}=-x_{3} \\
& Z(T)=\left\{\left(-x_{3}, x_{2}, x_{3}, 0\right)\right\}=\left\{x_{2}(0,1,0,0)+x_{3}(-1,0,1,0)\right\} \\
& =\operatorname{span}[(0,1,0,0),(-1,0,1,0)]=\operatorname{Range}\left(T^{*}\right)^{\perp} \\
& \Rightarrow w^{\perp}=\operatorname{spain}\left\{x^{2},-x^{3}+x\right\}
\end{aligned}
$$

QUESTION 2. Let $<,>$ be the dot product defined on R^{2}, and R^{3}. Given $T \in \operatorname{Hom}_{R}\left(R^{2}, R^{3}\right)$ such that $T\left(a_{1}, a_{2}\right)=$

$$
\begin{aligned}
& \left(2 a_{1}+a_{2},-a_{1}+4 a_{2},-5 a_{2}\right) \text { Find } T^{*} \in \operatorname{Hom}_{R}\left(R^{3}, R^{2}\right) . \\
& \langle T(v), w\rangle=\left\langle T^{*}\left(\mathbb{R}^{2}\right)\right\rangle, W \in \mathbb{R}^{3} \\
& \left\langle\left(2 a_{1}+a_{2},-a_{1}+4 a_{2},-5 a_{2}\right),\left(b_{1}, b_{2}, b_{3}\right)\right\rangle=\left\langle\left(a_{1}, a_{2}\right), T^{*}\left(b_{1}, b_{2}, b_{3}\right)\right\rangle \\
& 2 a_{1} b_{1}+a_{2} b_{1}-a_{1} b_{2}+4 a_{2} b_{2}-5 a_{2} b_{3}=\left\langle\left(a_{1}, a_{2}\right), T^{*}\left(b_{1}, b_{2}, b_{3}\right)\right\rangle \\
& a_{1}\left(2 b_{1}-b_{2}\right)+a_{2}\left(b_{1}+4 b_{2}-5 b_{3}\right)=\left\langle\left(a_{1}, a_{2}\right), T^{*}\left(b_{1}, b_{2}, b_{3}\right)\right\rangle \\
\Rightarrow & T^{*}\left(b_{1}, b_{2}, b_{3}\right)=\left(2 b_{1}-b_{2}, b_{1}+4 b_{2}-5 b_{3}\right)
\end{aligned}
$$

QUESTION 3. Let $V=H O M_{R}\left(R^{3}, R^{2}\right)=L_{R}\left(R^{3}, R^{2}\right)$. Find $\operatorname{dim}(V)$ and find a basis for V.

QUESTION 4. (Stare at the above question). Let $V=\operatorname{Hom}_{R}\left(P_{3}, P_{2}\right)$. Find $\operatorname{dim}(V)$ and find a basis for V.

$$
\begin{aligned}
& \operatorname{dim}(v)=6 \\
& \text { Basis of } V=\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right] \text { where } T_{1}, \ldots, T_{6}=P_{3} \rightarrow P_{2} \\
& T_{1}\left(a_{1} x^{2}+a_{2} x+a_{3}\right)=a_{1} x \\
& T_{2}\left(a_{1} x^{2}+a_{2} x+a_{3}\right)=a_{2} x \\
& T_{3}\left(a_{1} x^{2}+a_{2} x+a_{3}\right)=a_{3} x \\
& T_{4}\left(a_{1} x^{2}+a_{2} x+a_{3}\right)=a_{1} \\
& T_{5}\left(a_{1} x^{2}+a_{2} x+a_{3}\right)=a_{2} \\
& T_{6}\left(a_{1} x^{2}+a_{2} x+a_{3}\right)=a_{3}
\end{aligned}
$$

QUESTION 5. (short proof) Let $T_{1} \in H O M_{R}(V, V), T_{2} \in H O M_{R}\left(W_{+} W\right)$, and let $X=V \oplus W$. Define a linear transformation $L: X \rightarrow X$ such that $L(v, w)=\left(T_{1}(v), T_{2}(w)\right.$). We know (class notes) if a is an eigenvalue of T_{1} or T_{2}, then a is an eigenvalue of L. Now prove the converse, ie., Show that if c is an eigenvalue of L, then c is an eigenvalue of T_{1} or T_{2}.
C is an eigenvalue of $L \Rightarrow \exists(v, W) \in V \in W \&(V, W) \neq(O v, O w)$
st $L(V, W)=C(V, W)$

$$
L(v, w)=\left(T,(v), T_{2}(w)\right)=(C v, C W)=C(v, W)
$$

$$
L(V, W)=\left(T_{1}(V), T_{1}(V)=C V \quad \& \quad T_{2}(W)=C W \quad \text { where } v \neq 0, \& W \neq 0 w\right.
$$

$\Rightarrow c$ is an eigenvalue of $T_{1} \& T_{2}$

$$
\begin{aligned}
& \operatorname{dim}(V)=2 * 3=6 \quad \forall \approx R^{2 \times 3} \approx \prod^{6} \\
& \text { Basis of } \mathbb{R}^{2 \times 3}=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} 01\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right] /\right. \\
& \left.\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
& \text { Basis of } V=\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right\} \text { where } T_{1}, \ldots, T_{6}=\mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& T_{1}\left(a_{1}, a_{2}, a_{3}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left(a_{1}, 0\right) \\
& T_{2}\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{2}, 0\right) \quad T_{5}\left(a_{1}, a_{2}, a_{3}\right)=\left(0, a_{2}\right) \\
& T_{3}\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{3}, 0\right) \\
& T_{6}\left(a_{1}, a_{2}, a_{3}\right)=\left(0, a_{3}\right) \\
& T_{4}\left(a_{1}, a_{2}, a_{3}\right)=\left(0, a_{1}\right) \\
& \in \operatorname{Hom}_{R}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)
\end{aligned}
$$

QUESTION 6. Let $B=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]\right.$. We know that $\langle A, B\rangle=\operatorname{Trace}\left(A B^{T}\right)$ is an inner product on $R^{2 \times 2}$. Find an orthogonal basis for B (under $\left.<,>\right) L_{e} t \quad V_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad V_{2}=\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right] \quad V_{3}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$

$$
\begin{aligned}
& w_{1}=v_{1} \\
& w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]-\frac{\operatorname{Trace}\left(\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)}{\operatorname{Trace}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]-\frac{\operatorname{Trace}\left(\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]\right)}{\operatorname{Trace}\left(\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]\right)} \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right] \\
& \begin{array}{l}
w_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad w_{2}=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right] \\
w_{3}=v_{3}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]-\frac{\operatorname{Trace}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]\right)}{\operatorname{Trace}\left(\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]\right)}
\end{array} \\
& \text { * }\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]-\frac{\operatorname{Trace}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)}{4} \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]-\frac{\operatorname{Trace}\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)}{\operatorname{Trace}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\right)}\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]-\frac{\operatorname{Trace}\left(\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right]\right)}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}-\right. \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]-\frac{0}{2}\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]-\frac{5}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]-\left[\begin{array}{ll}
5 / 4 & 5 / 4 \\
5 / 4 & 5 / 4
\end{array}\right]=\left[\begin{array}{cc}
-1 / 4 & -1 / 4 \\
-1 / 4 & 3 / 4
\end{array}\right] \\
& w_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad w_{2}=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right] \\
& w_{3}=\left[\begin{array}{cc}
-1 / 4 & -1 / 4 \\
-1 / 4 & 3 / 4
\end{array}\right]
\end{aligned}
$$

$B=\operatorname{span}\left\{w_{1}, w_{2}, w_{3}\right\}$ where w_{1}, w_{2}, w_{3} are orthogonal under $\langle A, B\rangle=\operatorname{Trace}\left(A B^{T}\right)$

If we decided to use the dot-product on $R^{2 \times 2}$, will the elements of the basis that you calculated above stay orthogonal? Yes, they will stay orthogonal

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]=-1+1=0,\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 / 4 \\
-1 / 4 \\
-1 / 4 \\
3 / 4
\end{array}\right]=-1 / 4-1 / 4-1 / 4+3 / 4=0} \\
{\left[\begin{array}{llll}
-1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
-1 / 4 \\
-1 / 4 \\
-1 / 4
\end{array}\right]}
\end{gathered}
$$

QUESTION 7. (Short proof) Let W be a proper subspace of a finite dimensional vector space V.
(a) Show that there is a subspace L of V such that $V \approx W \oplus L$.(do not write much details)

$$
\operatorname{dim}(v)=n<\infty, \operatorname{dim}(W)=m<n
$$

Let $B=\left\{b_{1},-\operatorname{bm}\right\}$ be a basis of W,
Extend B to a basis of $V, V=\operatorname{span}\left\{b_{1}, \ldots, b_{m}, c_{1,}, \ldots c_{n-m}\right\}$
Let $L=\operatorname{span}\left\{c_{1}, \ldots, c_{n-m}\right\}$, Lis a subspace of
for $V \in V, V=\alpha_{1} b_{1}+\ldots+\alpha_{m} b_{m}+\beta_{1} c_{1}+\cdots+\beta_{n-m} C_{n-m}$
Define $T: V \rightarrow \underset{\text { (b) Show that there }}{W} T(V)=\left(\alpha_{1} b_{1}+\cdots+\alpha_{m} b_{m}, \beta_{1} C_{1}+\cdots+\beta_{n-m}, C_{n-m}\right)$
(b) Show that there is a subspace L of V such that $V=W+L$ It's clear that $T(V)=\left(O_{v}, O_{V}\right)$ use the same L in (a)
For any $v \in V, V=\underbrace{\alpha_{1} b_{1}+\cdots+\alpha_{m} b_{m}}+\underbrace{\beta_{1} c_{1}+\cdots+\beta_{n-m} c_{n-m} \Rightarrow V \in W+L}$
or any $W \in W+L, W=m_{1}+m_{2}$ sit $m_{1} \in W, m_{2} \in L, W=a_{1} b_{1}+\cdots+a_{m} b_{m}+d_{1} c_{1}+\cdots+d_{n-m} c_{n-}$
QUESTION 8. Let $V=\operatorname{span}\{(1,1,1,1,1),(0,1,1,1,1),(-1,-1,0,0,0)\}$ and $\quad \Rightarrow W \in V \quad \Rightarrow V=W+L$ $W=\{(0,0,1,1,1),(1,2,2,2,2),(0,0,-1,-1,1)\}$.
Find a basis for $V+W$ and find a basis for $V \cap W$.
\(\left[\begin{array}{ccccc}1 \& 1 \& 1 \& 1 \& 1 \\
0 \& 1 \& 1 \& 1 \& 1 \\
-1 \& -1 \& 0 \& 0 \& 0 \\
0 \& 0 \& 1 \& 1 \& 1 \\
1 \& 2 \& 2 \& 2 \& 2 \\

0 \& 0 \& -1 \& -1 \& 1\end{array}\right]\)| v_{1} |
| :--- |
| v_{2} |
| v_{3} |
| w_{2} |
| w_{3} |

\(w_{2}\left[\begin{array}{lllll}1 \& 1 \& 1 \& 1 \& 1 \\
0 \& 1 \& 1 \& 1 \& 1 \\
0 \& 0 \& 1 \& 1 \& 1 \\
0 \& 0 \& 1 \& 1 \& 1 \\
0 \& 1 \& 1 \& 1 \& 1 \\

0 \& 0 \& -1 \& -1 \& 1\end{array}\right]\)| v_{1} | $-v_{2}+\left(-v_{1}+w_{2}\right) \rightarrow-v_{1}+w_{2}$ |
| :--- | :--- |
| $v_{2}+v_{3}$ | $-\left(v_{1}+v_{3}\right)+w_{1} \rightarrow w_{1}$ |
| $w_{1}+w_{2}$ | $\left(w_{1}+v_{3}\right)+w_{3} \rightarrow w_{3}$ |
| w_{3} | |

\(\left[\begin{array}{lllll}1 \& 1 \& 1 \& 1 \& 1 \\
0 \& 1 \& 1 \& 1 \& 1 \\
0 \& 0 \& 1 \& 1 \& 1 \\
0 \& 0 \& 0 \& 0 \& 0 \\
0 \& 0 \& 0 \& 0 \& 0 \\

0 \& 0 \& 0 \& 0 \& 2\end{array}\right]\)| v_{1} |
| :--- |
| v_{2} |
| $v_{1}+v_{3}$ |
| $-v_{1}-v_{3}+w_{1}$ |
| $-v_{2}-v_{1}+w_{2}$ |
| $v_{1}+v_{3}+w_{3}$ |

$$
\begin{aligned}
& v+w=\operatorname{span}\{(1,1,1,1,1),(0,1,1,1,1),(-1,-1,0,0,0),(0,0,-1,-1,1)\} \\
& w_{1}=v_{1}+v_{3}=(0,0,1,1,1) \quad w_{2}=v_{1}+v_{2}=(1,2,2,2,2) \\
& v \cap W=\operatorname{span}\{(0,0,1,1,1),(1,2,2,2,2)\}
\end{aligned}
$$

QUESTION 9. Let $B=\operatorname{span}\left\{x^{2}+1, x^{2}\right\}$ be a subspace of P_{3}. We know $<f(x), k(x)>=\int_{0}^{1} f(x) k(x) d x$ is an inner product on P_{3}. Find an orthogonal basis for B (under $<,>$).

$$
\begin{aligned}
& v_{1}=x^{2}+1 v_{2}=x^{2}, \\
& w_{2}=v_{2}-\frac{\left.v_{2} w_{1}\right\rangle}{\left\langle w_{1} w_{1}\right\rangle} w_{1}=x^{2}-\frac{\left\langle x^{2}, x^{2}+1\right\rangle}{\left\langle x^{2}+1, x^{2}+1\right\rangle} x^{2}+1=x^{2}-\int_{0}^{1} x^{4}+x^{2} d x \\
&=x^{2}-\left[\frac{x^{5}}{5}+\frac{x^{3}}{3}\right]_{0}^{1}\left(x^{4}+2 x^{2}+1 d x\right. \\
& {\left[\frac{x^{5}}{5}+\frac{2 x^{2}}{3}+x\right]_{0}^{1} }
\end{aligned}
$$

$$
=x^{2}-\frac{2}{7} x^{2}-\frac{2}{7}=\frac{5}{7} x^{2}-\frac{2}{7}
$$

orthogonal basis for B under $\left.厶_{1}\right\rangle:\left\{x^{2}+1, \frac{5}{7} x^{2}-\frac{2}{7}\right\}$

$$
B=5 \operatorname{pan}\left\{x^{2}+1, \frac{5}{7} x^{2}-\frac{2}{7}\right\}
$$

see back of the page $V_{1} \quad V_{2}$
QUESTION 10. Let $V=\operatorname{span}\{(1,2,-1,0),(-1,-1,1,1)\}$ be a subspace of $X=R^{4}$.
(b) Find $P_{1}=\operatorname{Proj}{ }_{v}^{X}, P 2_{2}=\operatorname{Proj}_{W}^{X}$, and then find the standard matrix representation for P_{1}, P_{2}, say M_{1}, M_{2}. (You may calculate Q^{-1}, on the back of this page, but not in the given space). (NOTE that our definition of $P_{0} j_{V}^{N}$ here is a the identity linear transformation from R^{4} to R^{4} such that $P_{1}(v)=v$ if $v \in V$ and $P_{1}(v)=0_{v}$ if $v \notin V$... There is another definition of $\operatorname{Proj} \underset{V}{X}$ involving $<,>$ on X, but this is not what 1 mean here (just as we did in class)
(c) Is it true that $M_{1}^{2}=M_{1}$ and $M_{2}^{2}=M_{2}$? Find $M_{1}+M_{2}$? are you surprised? What is $M_{1} M_{2}$? $M_{1} M_{2}=0$-matrix Yes, $P_{1} \& P_{2}$ are idempotent $m_{1}+m_{2}=I_{4}$ Expected as per class notes

$$
\begin{aligned}
& Q=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
2 & -1 & 0 & 0 \\
-1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
v_{1} & v_{2} & w_{1} & w_{2}
\end{array}\right] \quad Q^{-1}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right] \\
& P_{1}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, \quad P_{1}\left(a_{1} v_{1}+a_{2} v_{2}+b_{1} w_{1}+b_{2} w_{2}\right)=a_{1} v_{1}+a_{2} v_{2} \\
& P_{2}: R^{4} \rightarrow R^{4}, \quad P_{2}\left(u_{1} v_{1}+a_{2} v_{2}+b_{1} w_{1}+b_{2} w_{2}\right)=b_{1} w_{1}+b_{2} w_{2} \\
& M, Q=\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 \\
2 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \Rightarrow M_{1}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
2 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 \\
-1 & 0 & 0 \\
-1 & 0 \\
-2 & 1 & 0
\end{array} 0\right] \\
& M_{2} Q=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \Rightarrow M_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) Find a subspace } W \text { of } R^{4} \text { such that } X=V+W \text {. } \\
& W=\{(0,0,1,0),(0,0,0,1)\} \quad V \cap W=\{(0,0,0,0)\} \\
& {\left[\begin{array}{rrrr}
1 & 2 & -1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

QUESTION 11. (Application of spectral theorem) Let $M=\left[\begin{array}{lll}3 & 0 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 1\end{array}\right]$. Let $T \in H O M_{R}\left(R^{3}, R^{3}\right)$ such that

$$
T\left(a_{1}, a_{2}, a_{3}\right)=M\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right], \mathbb{R}^{3} E_{1}
$$

(a) Convince me that $V=W+U$ for some invariant subspaces W, V of R^{3}.

$$
\begin{aligned}
& \left.\alpha I_{3}-M=\left[\begin{array}{ccc}
\alpha-3 & 0 & -2 \\
0 & \alpha-3 & -2 \\
0 & 0 & \alpha-1
\end{array}\right] \quad\left|\alpha I_{3}-M\right|=(\alpha-3)|\alpha-3-2| \begin{array}{cc}
\\
0 & \alpha-1
\end{array} \right\rvert\,=(\alpha-3)^{2}(\alpha-1) \\
& \mathcal{S i}_{\text {Eigenspaviant }}^{\alpha_{2}=3}\left(3 I_{3}-m\right)=\left[\begin{array}{lll}
0 & 0 & -2 \\
0 & 0 & -2 \\
0 & 0 & 2
\end{array}\right] \\
& \alpha_{1}=1 \quad\left(I_{3}-m\right)=\left[\begin{array}{ccc}
-2 & 0 & -2 \\
0 & -2 & -2 \\
0 & 0 & 0
\end{array}\right] \\
& -2 x_{1}-2 x_{3}=0 \Rightarrow x_{1}=-x_{3} \\
& x_{2}=-x_{3} \\
& \Rightarrow E_{3}=\operatorname{span}\{(1,0,0),(0,1,0)\}, E_{1}=\operatorname{span}\{(-1,-1,1)\}-(2) \\
& \text { By (1) } \&(2) \text { : } T \text { is diagonalizable, } E_{1} \cap E_{2}=\left\{0_{v}\right\}, E_{1}, E_{2} \subseteq \mathbb{R}^{3}
\end{aligned}
$$

By (1) \& (2) : T is diagonalizable frow class that $E_{1} \& E_{2}$ are invariant subspaces of \mathbb{R}^{3}
we know $\operatorname{dim}\left(E_{1}+E_{3}\right)=3$ \& $E_{1}+E_{3}$ subspace of \mathbb{R}^{3} of \mathbb{R}^{3}
since $\operatorname{dim}\left(E_{1}\right)=1, \operatorname{dim}\left(E_{3}\right)=2, \operatorname{dim}\left(E_{1} \cap E_{3}\right)=0 \Rightarrow \mathbb{R}^{3}=E_{1}+E_{3}$
(b) Let P_{1} be the projection of R^{3} onto W and P_{2} be a projection of R^{3} onto U. (Note that each is idempotent, $P_{1} P_{2}=0$, and $P_{1}+P_{2}=I$ (the identity map)).

$$
\begin{aligned}
& W=E_{1}=\operatorname{span}\{(-1,-1,1)\} \quad U=E_{3}=\operatorname{span}\{(1,0,0),(0,1,0)] \\
& V=12^{3} \\
& P_{1}=\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, P_{2}: \mathbb{R}^{3} \rightarrow R^{3} \\
& V \in 12^{3}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \quad P_{1}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)=a_{1} b_{1} \quad \quad a_{1}, a_{2}, a_{3} \in \mathbb{R} \\
& P_{2}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)=a_{2} b_{2}+a_{3} b_{3}
\end{aligned}
$$

(c) Find the standard matrix representation of P_{1} and P_{2}, say M_{1}, M_{2}. (Note that M_{1}, M_{2} are idempotents, $M_{1} M_{2}=0$ matrix and $M_{1}+M_{2}=I_{3}$)

$$
\begin{aligned}
& m_{2} Q=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow m_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

d) Find the standard matrix representation of $P_{1}(T), P_{2}(T)$, say L_{1}, L_{2}. (See class notes, and (c) and you are done), (Note that $L_{1}=a M_{1}$ and $L_{2}=b M_{2}, L_{1} L_{2}=0$-matrix, Only one of them in this question is idempotent, and $L_{1}+L_{2}=$ M, ie. $P_{1}(T)+P_{2}(T)=T$.

$$
L_{1}=\alpha_{1} M_{1}=1 \cdot M_{1}=M_{1}=\left[\begin{array}{lll}
0 & 0 & -1 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right] \quad L_{2}=\alpha_{2} M_{2}=3\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
3 & 0 & 3 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow L_{1} L_{2}=0 \text {-matrix } \quad L_{1}+L_{2}=\left[\begin{array}{lll}
3 & 0 & 2 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]=M \Rightarrow P_{1}(T)+P_{2}(T)= \\
& \text { QUESTION 12. Let } A=\left[\begin{array}{ccc}
3 & 6 & 6 \\
-3 & -3 & -9 \\
0 & 0 & 9
\end{array}\right] \text {. Find the smith-form of } A \text { over } Z \text {, ie., find invertible matrices } R \text { and } C
\end{aligned}
$$

over Z such that $R A C=D$, where D is a diagonal matrix with d_{1}, d_{2}, d_{3} are on the main diagonal such that $d_{1}\left|d_{2}\right| d_{3}$ and $d_{1} d_{2} d_{3}= \pm|A|$.

QUESTION 13. Define a function $<,>$ on R^{2} such that $\left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle=\left|a_{1} b_{1}\right|+\left|a_{2} b_{2}\right|$. Convince me that $<,>$ is NOT an inner product on R^{2}.

$$
\begin{aligned}
& \quad\left\langle\left(a_{1}, a_{2}\right)+\left(c_{1}, c_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle=\left\langle\left(a_{1}+c_{1}, a_{2}+c_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle \\
& =\left|\left(a_{1}+c_{1}\right) b_{1}\right|+\left|\left(a_{2}+c_{2}\right) b_{2}\right| \\
& =\left|a_{1} b_{1}+c_{1} b_{1}\right|+\left|a_{2} b_{2}+c_{2} b_{2}\right| \leq\left|a_{1} b_{1}\right|+\left|c_{1} b_{1}\right|+\left|a_{2} b_{2}\right|+\left|c_{2} b_{2}\right| \\
& \left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle+\left\langle\left(c_{1}, c_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle=\left|a_{1}, b_{1}\right|+\left|a_{2} b_{2}\right|+\left|c_{1} b_{1}\right|+\left|c_{2} b_{2}\right| \\
& \Rightarrow \\
& \Rightarrow\left\langle\left(a_{1}, a_{2}\right)+\left(c_{1}, c_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle\left\langle\left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle+\left\langle\left(c_{1}, c_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle\right.
\end{aligned}
$$

Faculty information
(violates the axiom)
must be equal
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates,

$$
\begin{aligned}
& \left.A=\left[\begin{array}{ccc}
3 & 6 & 6 \\
-3 & -3 & -9 \\
0 & 0 & 9
\end{array}\right] \stackrel{R_{1}+R_{2} \rightarrow R_{2}}{\sim}\left[\begin{array}{ccc}
3 & 6 & 6 \\
0 & 3 & -3 \\
0 & 0 & 9
\end{array}\right]=B \quad|A|=|B|=3 * 3 * 9=8 \right\rvert\, \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 6 & 6 \\
-3 & -3 & -9 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \sim R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 6 & 6 \\
0 & 3 & -3 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& 2 R_{2}+R_{1} \rightarrow R_{1}\left[\begin{array}{ccc}
-1 & -2 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 12 \\
0 & 3 & -3 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-4 C_{1}+C_{3} \rightarrow C_{3}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & -2 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 6 & 6 \\
-3 & -3 & -9 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 9
\end{array}\right]} \\
& \Rightarrow R A C=D \\
& |R|=1 \quad|C|=1 \\
& \Rightarrow R \& C \text { invertible } \\
& \text { over } Z
\end{aligned}
$$

Assignment IV MTH 512 , Fall 2018

Ayman Badawi

$$
\omega_{1} \quad \omega_{2}
$$

QUESTION 1. Let $<,>$ be the dot product on P_{4}. Given $W=\operatorname{Span}\left\{x^{3}+x+1, x^{3}+x\right\}$ is a subspace of P_{4}. Find the orthogonal complement of W in P_{4} [Hint: Use the fake S.M.R of T and the Fake S.M.R of $T^{* *}$, assume that the inner product is the dot product]
define $T_{0} P_{11} \rightarrow P_{2}$
let M te the fath S.M.R of T :
$T\left(a x^{3}+b x^{2}+c x+d\right)=M \cdot\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$
$M=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
define $T^{*}: P_{4} \rightarrow P_{4}$
lt M^{*} be the far S.M.R of T^{*} :
$T^{*}\left(a_{1} w_{1}+a_{3} w_{2}\right)=M^{*}\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$
$M^{*}=(\bar{M})^{\top}=\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0\end{array}\right]$

We Know: $\operatorname{Range}\left(T^{\star}\right)^{\perp}=Z(T) \Rightarrow W^{\perp}=Z(T)$

$$
Z(T) \Rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
d \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\cdot a+c+b=0 \Rightarrow-c, c+[d=0
$$

$$
\text { - } a+c=0 \Rightarrow a=-c
$$

$$
W^{1} \Rightarrow\left(\left[\begin{array}{c}
-c \\
b \\
c \\
0
\end{array}\right]\right)=+c\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
w^{\prime}=\operatorname{spun}\left\{\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

in P_{4} :

$$
\begin{aligned}
& \text { in } p_{4}: \\
& W^{\prime}=\operatorname{spun}\left\{\left(-x^{3}+x\right), x^{2}\right\}
\end{aligned}
$$

$$
\text { and }\left\langle w_{i}, w_{j}^{\frac{1}{j}}\right\rangle=0
$$

QUESTION 2. Let $<,>$ be the dot product defined on R^{2}, and R^{3}. Given $T \in H o m_{R}\left(R^{2}, R^{3}\right)$ such that $T\left(a_{1}, a_{2}\right)=$ $\left(2 a_{1}+a_{2},-a_{1}+4 a_{2},-5 a_{2}\right)$. Find $T^{*} \in \operatorname{Hom}_{R}\left(R^{3}, R^{2}\right)$.
$T: R^{2} \rightarrow R 3$

* $T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2},-a_{1}+4 a_{3},-5 a_{2}\right)$
et M be the $S M 1 \cdot R$ of T :
$M=\left[\begin{array}{cc}2 & 1 \\ -1 & 4 \\ 0 & -5\end{array}\right]$
let $T^{*}: R^{3} \rightarrow R^{2}$
$T^{ \pm}\left(b_{1}, b_{2}, b_{3}\right)=(-, \ldots)$
en M^{*} be the S.M.R of T^{*}.
$M^{*}=\left[\begin{array}{ccc}2 & -1 & 0 \\ 1 & 4 & -5\end{array}\right]$

$$
T^{*}\left(b_{1}, b_{2}, b_{3}\right)=M^{*}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
2 & -1 & 0 \\
1 & 4 & -5
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]+b_{2}\left[\begin{array}{c}
-1 \\
4
\end{array}\right]+b_{3}\left[\begin{array}{c}
0 \\
-5
\end{array}\right] \\
& =b_{1}
\end{aligned}
$$

$$
T^{*}\left(b_{1}, b_{2}, b_{3}\right)=\left(2 b_{1}-b_{2}, b_{1}+4 b_{2}-5 b_{3}\right)
$$

$$
T * \in \operatorname{Hom}\left(R^{j}, R_{2}\right)
$$

QUESTION 3. Let $V=H O M_{R}\left(R^{3}, R^{2}\right)=L_{R}\left(R^{3}, R^{2}\right)$. Find $\operatorname{dim}(V)$ and find a basis for V.
we know HOMR $\left(R^{3}, R^{2} \eta \nsim \mathbb{R}^{6}\right.$;
So $\operatorname{dim}(V)=\operatorname{dim}\left(R^{6}\right)=6$
we need to find 6 ind lineatranif from $R^{3} \rightarrow R^{2}$

- $T_{1}: R^{4} \rightarrow R^{2}$
$T_{1}(a, b, c)=(a, 0)$
- $T_{3}: R^{3} \rightarrow R_{2}$
$T_{3}(a, b, c)=(b, 0)$
, $T_{3}: R^{3} \rightarrow R^{2}$
$T_{3}(a, b, c)=(c, 0)$
$T_{4}: R^{3} \rightarrow R^{2}$
$T_{4}(a, b, c)=(0, a)$

$$
\begin{aligned}
& T_{5}: R^{3} \rightarrow R^{2} \\
& T_{5}(a, b, c)=(0, b) \\
& T_{6}: R^{3} \rightarrow R^{2} \\
& T_{6}(a, b, c)=(a, c) \\
& \text { Basis for } V=\operatorname{span}\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right\}
\end{aligned}
$$

QUESTION 4. (Stare at the above question). Let $V=\operatorname{Hom}_{R}\left(P_{3}, P_{2}\right)$. Find $\operatorname{dim}(V)$ and find a basis for V.
$\operatorname{Hom}_{R}\left(P_{3}, P_{2}\right) \propto P^{6} \approx \mathbb{R}^{6}$
$\operatorname{dim}(y)=6$
$T_{1}: P_{3} \rightarrow P_{2}$
$T_{1}\left(a x^{2}+b x+c\right)=a x$
$+T_{3}: P_{3} \rightarrow P_{2}$
$T_{3}\left(a x^{2}+b x+c\right)=b x$
$+T_{3}: P_{3} \rightarrow P_{2}$
$\Gamma_{3}\left(a x^{2}+b x+c\right)=c x$

$$
\begin{aligned}
& \& T_{4}: P_{3} \rightarrow P_{2} \\
& T_{11}\left(a x^{2}+b x+c\right)=a \\
& * T_{6}: P_{3} \rightarrow P_{2} \\
& T_{5}\left(a x^{2}+b x+c\right)=b \\
& * T_{6}: P_{3} \rightarrow P_{2} \\
& T_{6}\left(a x^{2}+b x+c\right)=c \\
& \text { Basis for } V=\operatorname{span}\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right\} .
\end{aligned}
$$

QUESTION 5. (short proof) Let $T_{1} \in H O M_{R}(V, V), T_{2} \in H O M_{R}(W, W)$, and let $X=V \oplus W$. Define a linear transformation $L: X \rightarrow X$ such that $L(v, w)=\left(T_{1}(v), T_{2}(w)\right)$. We know (class notes) if a is an eigenvalue of T_{1} or T_{2}, then a is an eigenvalue of L. Now prove the converse, ie., Show that if c is an eigenvalue of L, then c is an eigenvalue of T_{1} or T_{2}.
\rightarrow lake cube the eigenvalue of L corresponding to the eigen space $(v, 0) \in X$
$L(V, 0)=c_{1}(V, 0)$
$\begin{aligned} \therefore L(V, 0)=\left(T_{1}(v), T_{2}(0)\right. & =C_{1}(V, 0) \Rightarrow T_{1}(v)=G_{1} V \therefore c_{1} \text { is an eigenvalue of } T_{1} \\ & \left.=C_{1}, 0\right)\end{aligned}$ \rightarrow take c_{2} be the eigen value of L corresponding to the aigenspace $(0, \omega) \in X$ $L(0, \omega)=\left(T_{1}(0), T_{3}(\omega)\right)=c_{2}(0, \omega)=\left(0, c_{3} \omega\right), \therefore c_{2}$ is an eigenvate of T_{2} \rightarrow Take c_{3} be the eigenvalue of L for $(v, \omega) \in X$.

$$
\begin{aligned}
& \text { Take } c_{3} \text { be the eigenvalue of } L \text { for }(v, w) \in X . \\
& \left.\left.L(v, w)=c_{3}(v, w)=\left(c_{3} v, c_{3} w\right)=\left(T_{1} v\right), T_{2}(w)\right) \Rightarrow \begin{array}{l}
T_{1}(v)=c_{3} v \\
T_{2}(w)=c_{3} w
\end{array}\right\} \begin{array}{l}
c_{3} \text { eigenvalue } \\
\text { for both } T_{1}, T_{2}
\end{array} \text { } \quad \text {. }
\end{aligned}
$$

Therfore, if c is an eigenvalue of L then c is an eigenvalue of T_{1} or T_{1} or $T_{1} \& T_{2}$.

QUESTION 6. Let $B=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]\right\}$. We know that $\langle A, B\rangle=\operatorname{Trace}\left(A B^{T}\right)$ is an inner product on $R^{2 \times 2}$. Find an orthogonal basis for B (under $<,>$) Calculations
\rightarrow using Gram. Schmidt:
et $B^{\perp}=\operatorname{span}\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$

$$
\begin{aligned}
& * w_{1}=v_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
&+w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle w_{1}}{\left\langle w_{1}, w_{1}\right\rangle} \\
&=\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]-\frac{4}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right] \\
& * w_{3}=v_{3}-\left\langle v_{3} w_{2}\right\rangle w_{2}-\left\langle v_{3,} w_{1}\right\rangle w_{1} \\
&\left\langle w_{1}, w_{1}\right\rangle \\
&\left\langle w_{2}, w_{2}\right\rangle \\
&=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]-\frac{5}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 / 4 & -1 / 4 \\
-1 / 4 & 3 / 4
\end{array}\right]
\end{aligned}
$$

So $B^{1}=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}-1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}-1 / 4 & -1 / 4 \\ -1 / 4 & 3 / 41\end{array}\right]\right\}$

But if ω_{3} is orthogonal so is $4 w_{3}$

$$
n_{3}=\left[\begin{array}{cc}
-1 & -1 \\
-1 & 3
\end{array}\right]
$$

So $\underline{B}^{\perp}=\operatorname{spun}\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{rr}-1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}-1 & -1 \\ -1 & 3\end{array}\right]\right\}$

If we decided to use the dot-product on $R^{2 \times 2}$, will the elements of the basis that you calculated above stay orthogonal?
yes because we still got $\left\langle w_{i}, \omega_{j}\right\rangle=0 \quad i+j . \quad 1 \leqslant i \leqslant 3,1 \leqslant j \leqslant 3$ with using the dot product as the inner product.

QUESTION 7. (Short proof) Let W be a proper subspace of a finite dimensional vector space V.
(a) Show that there is a subspace L of V such that $V \approx W \oplus L$.(do not write much details) $\mathfrak{Z Z}(T)=O V$.

To show isomorphism wi show
$\operatorname{dim}(V)=\operatorname{dim}(W \oplus L)$ and definc
$T: V \rightarrow W \oplus L \quad S t \quad z(T)=O_{r}$
let $\operatorname{dim}(V)=n \prec \infty$
fake $\operatorname{dim}(W)=k<n \& \operatorname{dim}(L)=n-k$
then $\operatorname{dim}(V)=\operatorname{dim}(W \oplus L)$,
take. $V=\operatorname{span}\left\{b_{1}, b_{2} \ldots b_{n}\right\}>$ basis.

$$
\left.\begin{array}{l}
W=\operatorname{span}\left\{w_{1}, w_{2} \ldots, w_{k}\right\} \\
L=\operatorname{span}\left\{l_{1}, l_{2}, \ldots, l_{n-k}\right\}
\end{array}\right\}
$$

rake $V \in\left(\begin{array}{l}(T)\end{array} V=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots+\alpha_{n} b_{n}\right.$

$$
\begin{aligned}
& T(v)=\left(d_{1} \omega_{1}+\cdots d_{k} \omega_{k}, c_{1} l_{1}+\cdots+C_{n-k} l_{n-k}\right)=(0, C \\
& d_{1} \omega_{1}+\cdots d_{k} \omega_{k}=0 \text { iff } d_{2}=0 \Rightarrow Z(T)=O_{V} \\
& c_{1} e_{1}+\cdots+c_{n+k} e_{n-k}=0 \text { if } c_{i}=0 \Rightarrow
\end{aligned}
$$

(b) Show that there is a subspace L of V such that $V=W+L$.
we know if L, w are subspaces of V then.
$L+W=\{e+w$ le eL, $w \in W\}$ is a subspace of V
But $\operatorname{dim}(L+W)=n-k+k^{\prime}+\operatorname{dim}(L \cap W)$
talking $L \cap W=0 \quad \operatorname{dim}(L+W)=n$
hence we can find n linearly. Ind elements to span $(L+W)$ hence $\operatorname{span}\{(L+w)\}=\operatorname{span} \notin V\}$
from ce QUESTION 8. Let $V=\operatorname{spgn}_{2}\{(1,1,1,1,1),(0,1,1,1,1),(-1,-1,0,0,0)\}$ and dfition $W=\{(0,0,1,1,1),(1,2,2,2,2),(0,0,-1,-1,1)\}$.

Find a basis for $V+W$ and find a basis for $V \cap W$.

the Basis for $y+w=\operatorname{span}\{(1,1,1,1,1),(0,1,1,1,1),(0,0,0,0,2)\}$
or $\operatorname{span}\{(1,1,1,1,1),(0,1,1,1,1),(0,0,-1,-1,1)\}$
the Basis for $V \cap W$ is found from the zero rows,

$$
\begin{aligned}
-\left(v_{1}+v_{3}\right) & +w_{1}=(0,0,0,0,0) \\
w_{1} & =v_{1}+v_{3}=(0,0,1,1,1) \\
w_{2}-v_{1}-v_{2} & =(0,0,0,0,0) \\
w_{2} & =\left(v_{1}+v_{2}\right)=(1,2,2,2,2)
\end{aligned}
$$

The basis for $\vee \cap W=\operatorname{span}\{(0,0,1,1,1),(1,2,2,2,2)\}$

QUESTION 9. Let $B=\operatorname{span}\left\{x^{2}+1, x^{2}\right\}$ be a subspace of P_{3}. We know $<f(x), k(x)>=\int_{0}^{1} f(x) k(x) d x$ is an inner product on P_{3}. Find an orthogonal basis for B (under $<,>$).

45 ing Gram-Schmidt :
lt $B^{\perp}=$ spun $\left\{w_{1}, w_{2}\right\}$ be the or thogond basis for B.
$w_{1}=v_{1}=x^{2}+1$
$W_{2}=V_{2}-\frac{\left\langle v_{3}, w_{1}\right\rangle w_{1}}{\left\langle W_{1}, w_{1}\right\rangle}$
$=x^{2}-\frac{\left\langle x^{2}, x^{2}+1\right\rangle\left(x^{2}+1\right)}{\left\langle x^{2}+1, x^{2}+1\right\rangle}$
. $\left\langle x^{2}, x^{2}+1\right\rangle=\int_{0}^{1} x^{4}+x^{2} d x=\frac{x^{5}}{5}+\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{8}{15}$

- $\left\langle x^{2}+1, x^{2}+1\right\rangle=\int_{0}^{1} x^{4}+2 x^{2}+1 d x=\frac{x^{5}}{5}+\frac{2}{3} x^{3}+\left.x\right|_{0} ^{1}$

$$
=\frac{28}{15}
$$

QUESTION 10. Let $V=\operatorname{span}\{(1,2,-1,0),(-1,-1,1,1)\}$ be a subspace of $X=R^{4}$.
(a) Find a subspace W of R^{4} such that $X=V+W$.

Find two more independent elements in $R^{4} \backslash V$

$$
w=\operatorname{span}\{(0,0,1,0),(0,0,0,1)\}
$$

(b) Find $P_{1}=P r o j{ }_{V}^{X}, P \$_{2}=\operatorname{Proj}{\underset{W}{w}}_{X}^{X}$, and then find the standard matrix representation for P_{1}, P_{2}, say M_{1}, M_{2}. (You may calculate Q^{-1}, on the back of this page, but not in the given space). (NOTE that our definition of $\operatorname{Poj}_{V}^{X}$ here is a the identity linear transformation from R^{4} to R^{4} such that $P_{1}(v)=v$ if $v \in V$ and $P_{1}(v)=0_{v}$ if $v \notin V$... There is another definition of $\operatorname{Proj} \mathcal{N}^{X}$ involving $<,>$ on X , but this is not what I mean here (just as we did in class)

$$
P_{1}: R^{4} \rightarrow R^{4} \quad\left(S+\operatorname{ragk}\left(P_{1}\right)=V\right)
$$

$P_{1}\left(a v_{1}+b v_{2}+c w_{1}+d w_{2}\right)=a v_{1}+b v_{2}$
So $P_{1}\left(V_{1}\right)=V_{1}, P_{1}\left(v_{2}\right)=V_{2}$ where v_{1}, V_{2} basisfor V $P_{1}\left(w_{1}\right)=O_{X}, P_{p}\left(\omega_{2}\right)=O_{X}$ where w_{1}, w_{2} basis for W $\left.\begin{array}{rl} & P_{1}\left(w_{1}\right) \\ P_{i}\left(v_{1}\right) \\ n_{i}\left(v_{y}\right) & P_{1}\left(w_{1} R_{1}\left(w_{1}\right)\right.\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]=M_{1}\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right] Q Q$ $1_{1}=M_{1} v e Q^{-1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0\end{array}\right]\left[\begin{array}{cccc}-1 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right]$
$P_{2}: R^{4} \rightarrow R^{4}\left(S+\right.$ range $\left.\left(P_{2}\right)=W\right)$

$$
P_{3}\left(a v_{1}+b v_{2}+c w_{1}+d w_{2}\right)=c w_{1}+d w_{2}
$$

$$
\text { So } P_{2}\left(v_{1}\right)=o_{k / 1} P_{2}\left(v_{2}\right)=O_{x}
$$

$$
\begin{gathered}
P_{2}\left(\omega_{1}\right)=\omega_{1}, P_{3}\left(\omega_{2}\right)=\omega_{2} \\
M_{2 \omega_{1} e}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=M_{3}\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
2 & -1 & 0 & 0 \\
-1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
P_{2}\left(\omega_{1}\right)=\omega_{1}, P_{3}\left(\omega_{2}\right)=\omega_{2}
$$

$$
M_{2}=M_{2 w, e} Q^{-1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right]
$$

$$
M_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right]
$$

(c) Is it true that $M_{1}^{2}=M_{1}$ and $M_{2}^{2}=M_{2}$? Find $M_{1}+M_{2}$? are you surprised? What is $M_{1} M_{2}$?

$$
M_{1}+M_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad, M_{1} M_{2}=O_{4 \times 4}
$$

QUESTION 11. (Application of spectral theorem) Let $M=\left[\begin{array}{lll}3 & 0 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 1\end{array}\right]$. Let $T \in H O M_{R}\left(R^{3}, R^{3}\right)$ such that $T\left(a_{1}, a_{2}, a_{3}\right)=M\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] . \quad M \Rightarrow$ diagonat.
(a) Convince me that $V=W+U$ for some invariant subspaces W, V of R^{3}.

$$
\begin{aligned}
& \lambda I-M\left|=\left|\begin{array}{ccc}
\lambda-3 & 0 & -2 \\
0 & \lambda-3 & -2 \\
0 & 0 & \lambda-1
\end{array}\right|=(\lambda-3)^{2}(\lambda-1)=0\right. \\
& \lambda_{1}=1, \lambda_{1,3}=3
\end{aligned}
$$

the eigenspace for $\lambda=1, E_{1}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-3 & 0 & -2 \\
0 & -2 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow \begin{array}{l}
-3 x_{1}-3 x_{3}=0 \Rightarrow x_{1}=-x_{3} \\
-2 x_{2}-3 x_{3}=0 \Rightarrow x_{2}=-x_{3}
\end{array}} \\
& E_{1}=\operatorname{span}=\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]\right\} \quad \text { sect } w=E_{1}
\end{aligned}
$$

the eigen space cornesponcling to $\lambda=3, \Sigma_{3}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & -2 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow x_{3}=0, x_{2}, x_{1} \text { free }} \\
& E_{3}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}, \text { leet } U=E_{3}
\end{aligned}
$$

So since the characterstic eq of the transfer. Could be written'imuttiplication of linear factors and $\operatorname{dim}\left(E_{\alpha_{i}}\right)=$ multiplicity of the correspond eigen value then T is diagonlizble.
and by the spectral theorem

$$
V=W+U
$$

Where W and U are invarient subspaces $\Rightarrow W=E_{1}$, take $W \in E_{1}$

$$
\begin{aligned}
& T(w)=1 \cdot w \in E_{1} \\
& \Rightarrow U=E_{2 j} \text { take } u \in E_{3} \\
& T(u)=3 \cdot u \in E_{3}
\end{aligned}
$$

(b) Let P_{1} be the projection of R^{3} onto W and P_{2} be a projection of R^{3} onto U. (Note that each is idempotent, $P_{1} P_{2}=0$, and $P_{1}+P_{2}=I$ (the identity map)).

$$
\begin{aligned}
& P_{1}: R^{3} \longrightarrow R^{3}\left(S+R \text { any }\left(P_{1}\right)=W\right) \\
& P_{1}\left(a w_{1}+b u_{1}+c u_{2}\right)=I\left(a \omega_{1}\right)=a w_{1}
\end{aligned}
$$

where w_{1} is a basis of W and u_{1}, t_{2} are basis of U

$$
\begin{aligned}
& P_{1}\left(w_{1}\right)=w_{1}=(-1,-1,1) \\
& P_{1}\left(u_{1}\right)=O W, \quad P_{1}\left(u_{2}\right)=O V
\end{aligned}
$$

$$
\begin{aligned}
& P_{3}: R^{3} \rightarrow R^{3} \quad\left(S+\operatorname{Rang}\left(P_{2}\right)=U\right) \\
& P_{2}\left(a \omega_{1}+b u_{1}+C u_{2}\right)=b u_{1}+C u_{2}
\end{aligned}
$$

$$
P_{2}\left(w_{1}\right)=O v
$$

$$
P_{2}\left(u_{1}\right)=u_{1}=(1,0,0)
$$

$$
p_{2}\left(u_{2}\right)=u_{2}=(0,1,0)
$$

(c) Find the standard matrix representation of P_{1} and P_{2}, say M_{1}, M_{2}. (Note that M_{1}, M_{2} are idempotents, $M_{1} M_{2}=0$ -
matrix and $M_{1}+M_{2}=I_{3}$)

$$
\begin{gathered}
\text { matrix and } \left.M_{1}+M_{2}=I_{3}\right) \\
t_{1} w_{1}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]=M_{1}\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
M_{1}=M_{\text {we }} Q^{-1}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \\
M_{1}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

4 Calualations

$$
\begin{aligned}
& M_{2} u_{1}= {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=M_{2}\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] } \\
& M_{2}=M_{2, e} Q^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \\
& M_{2}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

where $M_{1}+M_{2}=I$ anil $M_{1} M_{2}=0$
d) Find the standard matrix representation of $P_{1}(T), P_{2}(T)$, say L_{1}, L_{2}. (See class notes, and (c) and you are done). (Note that $L_{1}=a M_{1}$ and $L_{2}=b M_{2}, L_{1} L_{2}=0$-matrix, Only one of them in this question is idempotent, and $L_{1}+L_{2}=$ M, i.e. $P_{1}(T)+P_{2}(T)=T$.

QUESTION 12. Let $A=\left[\begin{array}{ccc}3 & 6 & 6 \\ -3 & -3 & -9 \\ 0 & 0 & 9\end{array}\right]$. Find the smith-form of A over Z, ie., find invertible matrices R and C over Z such that $R A C=D$, where D is a diagonal matrix with d_{1}, d_{2}, d_{3} are on the main diagonal such that $d_{1}\left|d_{2}\right| d_{3}$ and $d_{1} d_{2} d_{3}= \pm|A|$. the ged $=3, \mid A 1=81$

$$
\begin{aligned}
& \text { and } d_{1} d_{2} d_{3}= \pm|A| \text {. the ged }=3,1 A 1=81 \\
& \left.\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 6 & 6 \\
-3 & -3 & -9 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \left\lvert\, \begin{array}{cc}
C_{2}+C_{3} \rightarrow C_{3} \\
R_{1}+R_{2} \rightarrow R_{2} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
3 & 6 & 6 \\
0 & 3 & -3 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{ccc}
-1 & -2 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
0 & 0
\end{array}\right.\right] \cdot\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 9
\end{array}\right] \cdot \underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & -4 \\
0 & 1 \\
0 & 1
\end{array}\right]}_{R} \underbrace{C}_{C} \\
& -3 R_{2}+R_{1} \rightarrow R_{1} \\
& {\left[\begin{array}{ccc}
-1 & -2 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
3 & 0 & 12 \\
0 & 3 & -3 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& -4 C_{1}+C_{3} \rightarrow C_{3} \\
& {\left[\begin{array}{ccc}
-1 & -2 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & -3 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

QUESTION 13. Define a function $<,>$ on R^{2} such that $\left.<\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle=\left|a_{1} b_{1}\right|+\left|a_{2} b_{2}\right|$. Convince me that $<,>$ is NOT an inner product on R^{2}.

The properties of the inner
product that fails ane: take $q \in F=R$
(1) $\left\langle\alpha\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle=\left\langle\left(a_{1}, d a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle$
$=\left|\alpha a_{1} b_{1}\right|+\left|\alpha a_{3} b_{2}\right|=|\alpha|\left(\left|a_{1} b_{1}\right|+\left|a_{3} b_{2}\right|\right)$
Since $d \in R$

$$
=|\alpha|\left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle
$$

could be negative $\underset{\text { Faculty information }}{+} \alpha\left\langle\left(a_{1,} a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle$
(2) $\left\langle\left(a_{1}, a_{2}\right)+\left(c_{1}, c_{3}\right),\left(b_{1}, b_{2}\right)\right\rangle=\left\langle\left(a_{1}+c_{1}, a_{2}+\cdots\right),\left(b_{1}, b_{2}\right\rangle\right.$ $=\left|\left(a_{1}+c_{1}\right) b_{1}\right|+\left|\left(a_{2}+c_{2}\right) b_{2}\right|=\left|a_{1} b_{1}+c_{1} b_{1}\right|+\left|a_{2} b_{2}+c_{2} b_{2}\right|$ using tringise inequality:

$$
\begin{aligned}
& \leqslant\left|a_{1} b_{1}\right|+\left|c_{1} b_{1}\right|+\left|a_{2} b_{2}\right|+\left|c_{2} b_{2}\right| \\
& \quad=\left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle+\left\langle\left(c_{1}, c_{2}\right),\left(a_{1}, b_{2}\right)\right\rangle
\end{aligned}
$$

So $\left\langle\left(a_{1}, a_{2}\right)+\left(c_{1}, c_{3}\right),\left(b_{1}, b_{2}\right)\right\rangle \leqslant\left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle$
\therefore hence the property lands.

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
E-mail: abaduri@us.edu, www. ayman-badewi.com
So it's not an inner product space.

